skip to main content


Search for: All records

Creators/Authors contains: "Bryan, Marta L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The photometric and spectral variability of brown dwarfs probes heterogeneous temperature and cloud distributions and traces the atmospheric circulation patterns. We present a new 42 hr Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectral time series of VHS 1256-1257 b, a late L-type planetary-mass companion that has been shown to have one of the highest variability amplitudes among substellar objects. The light curve is rapidly evolving and best fit by a combination of three sine waves with different periods and a linear trend. The amplitudes of the sine waves and the linear slope vary with the wavelength, and the corresponding spectral variability patterns match the predictions by models invoking either heterogeneous clouds or thermal profile anomalies. Combining these observations with previous HST monitoring data, we find that the peak-to-valley flux difference is 33% ± 2% with an even higher amplitude reaching 38% in the J band, the highest amplitude ever observed in a substellar object. The observed light curve can be explained by maps that are composed of zonal waves, spots, or a mixture of the two. Distinguishing the origin of rapid light curve evolution requires additional long-term monitoring. Our findings underscore the essential role of atmospheric dynamics in shaping brown-dwarf atmospheres and highlight VHS 1256-1257 b as one of the most favorable targets for studying the atmospheres, clouds, and atmospheric circulation of planets and brown dwarfs. 
    more » « less
  2. Abstract

    The orientation between a star’s spin axis and a planet’s orbital plane provides valuable information about the system’s formation and dynamical history. For non-transiting planets at wide separations, true stellar obliquities are challenging to measure, but lower limits on spin–orbit orientations can be determined from the difference between the inclination of the star’s rotational axis and the companion’s orbital plane (Δi). We present results of a uniform analysis of rotation periods, stellar inclinations, and obliquities of cool stars (SpT ≳ F5) hosting directly imaged planets and brown dwarf companions. As part of this effort, we have acquired newvsini*values for 22 host stars with the high-resolution Tull spectrograph at the Harlan J. Smith telescope. Altogether our sample contains 62 host stars with rotation periods, most of which are newly measured using light curves from the Transiting Exoplanet Survey Satellite. Among these, 53 stars have inclinations determined from projected rotational and equatorial velocities, and 21 stars predominantly hosting brown dwarfs have constraints on Δi. Eleven of these (5211+10% of the sample) are likely misaligned, while the remaining 10 host stars are consistent with spin–orbit alignment. As an ensemble, the minimum obliquity distribution between 10 and 250 au is more consistent with a mixture of isotropic and aligned systems than either extreme scenario alone—pointing to direct cloud collapse, formation within disks bearing primordial alignments and misalignments, or architectures processed by dynamical evolution. This contrasts with stars hosting directly imaged planets, which show a preference for low obliquities. These results reinforce an emerging distinction between the orbits of long-period brown dwarfs and giant planets in terms of their stellar obliquities and orbital eccentricities.

     
    more » « less
  3. Abstract

    M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similarTeff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R∼ 35,000)K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and findMB=88.03.2+3.4MJup, putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star witha=383+4au ande= 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σsignificance) and tentatively detectH218O(3.7σsignificance) in the companion’s atmosphere and measure12CO/13CO=9822+28andH216O/H218O=24080+145after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure12CO/13CO=7916+21andC16O/C18O=28870+125for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σlevel, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO andH218Oabundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    The formation and evolution pathway for the directly imaged multiplanetary system HR 8799 remains mysterious. Accurate constraints on the chemical composition of the planetary atmosphere(s) are key to solving the mystery. We perform a detailed atmospheric retrieval on HR 8799 c to infer the chemical abundances and abundance ratios using a combination of photometric data along with low- and high-resolution spectroscopic data (R∼ 20–35,000). We specifically retrieve [C/H], [O/H], and C/O and find them to be0.550.39+0.36,0.470.32+0.31, and0.670.15+0.12at 68% confidence. The superstellar C and O abundances, yet a stellar C/O ratio, reveal a potential formation pathway for HR 8799 c. Planet c, and likely the other gas giant planets in the system, formed early on (likely within ∼1 Myr), followed by further atmospheric enrichment in C and O through the accretion of solids beyond the CO ice line. The enrichment either preceded or took place during the early phase of the inward migration to the current planet locations.

     
    more » « less